In three previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources in the LARES 2 experiment, its error budget, Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts per thousand in the test of frame-dragging, and we treated the error due to the uncertainty in the de Sitter effect, a relativistic orbital perturbation. Here we discuss the impact in the error budget of the LARES 2 frame-dragging experiment of the orbital perturbation due to thermal drag or thermal thrust. We show that the thermal drag induces an uncertainty of about one part per thousand in the LARES 2 frame-dragging test, consistent with the error estimates in our previous papers.
A new laser-ranged satellite for General Relativity and space geodesy: IV. Thermal drag and the LARES 2 space experiment
Ciufolini I.;
2018-01-01
Abstract
In three previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources in the LARES 2 experiment, its error budget, Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts per thousand in the test of frame-dragging, and we treated the error due to the uncertainty in the de Sitter effect, a relativistic orbital perturbation. Here we discuss the impact in the error budget of the LARES 2 frame-dragging experiment of the orbital perturbation due to thermal drag or thermal thrust. We show that the thermal drag induces an uncertainty of about one part per thousand in the LARES 2 frame-dragging test, consistent with the error estimates in our previous papers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.