Carbon fibre reinforced poly-etherether-ketone (PEEK) and poly-phenylene-sulfide (PPS) composites were rapidly surface-treated by high-power UV light, and then adhesively bonded to aluminium 2024-T3 and carbon fibre/epoxy composites. The results of a single lap-shear joint test demonstrated that a UV-treatment lasting for 5 s was sufficient to prevent joint failure occurring at the composite/adhesive interfaces in all cases, e.g. it increased the failure strength of the PPS composite/aluminium joints from 11.1 MPa to 37.5 MPa. Moreover, the composite/adhesive interfaces performed well upon an exposure of the joints to an environment of high humidity and temperature for 8 weeks. Additionally, an investigation lasting for 6 months showed no degradation of the surface functionalisation from UV-irradiation. Overall, this work highlights high-power UV-irradiation a very promising method for surface preparation of thermoplastic composites (TPCs) for adhesive joining, i.e. TPC adhesive joints with excellent structural integrity can be obtained by using this rapid, eco-friendly and low-cost surface-treatment method.

Rapid surface activation of carbon fibre reinforced PEEK and PPS composites by high-power UV-irradiation for the adhesive joining of dissimilar materials

Scarselli G.
Validation
;
2020-01-01

Abstract

Carbon fibre reinforced poly-etherether-ketone (PEEK) and poly-phenylene-sulfide (PPS) composites were rapidly surface-treated by high-power UV light, and then adhesively bonded to aluminium 2024-T3 and carbon fibre/epoxy composites. The results of a single lap-shear joint test demonstrated that a UV-treatment lasting for 5 s was sufficient to prevent joint failure occurring at the composite/adhesive interfaces in all cases, e.g. it increased the failure strength of the PPS composite/aluminium joints from 11.1 MPa to 37.5 MPa. Moreover, the composite/adhesive interfaces performed well upon an exposure of the joints to an environment of high humidity and temperature for 8 weeks. Additionally, an investigation lasting for 6 months showed no degradation of the surface functionalisation from UV-irradiation. Overall, this work highlights high-power UV-irradiation a very promising method for surface preparation of thermoplastic composites (TPCs) for adhesive joining, i.e. TPC adhesive joints with excellent structural integrity can be obtained by using this rapid, eco-friendly and low-cost surface-treatment method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/442237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact