In this paper, the Carrera Unified Formulation and the generalized differential quadrature technique are combined for predicting the static deformations and the free vibration behavior of thin and thick isotropic as well as cross-ply laminated plates. Through numerical experiments, the capability and efficiency of this technique, based on the strong formulation of the problem equations, are demonstrated. The numerical accuracy and convergence are also examined. It is worth noting that all the presented numerical examples are compared with both literature and numerical solutions obtained with a finite element code. The proposed methodology appears to be able to deal not only with uniform boundary conditions, such as fully clamped or completely simply-supported, but also with mixed external conditions, that can be clamped, supported or free.
Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a Unified Formulation
Viola, E.;Tornabene, F.;Fantuzzi, N.;
2014-01-01
Abstract
In this paper, the Carrera Unified Formulation and the generalized differential quadrature technique are combined for predicting the static deformations and the free vibration behavior of thin and thick isotropic as well as cross-ply laminated plates. Through numerical experiments, the capability and efficiency of this technique, based on the strong formulation of the problem equations, are demonstrated. The numerical accuracy and convergence are also examined. It is worth noting that all the presented numerical examples are compared with both literature and numerical solutions obtained with a finite element code. The proposed methodology appears to be able to deal not only with uniform boundary conditions, such as fully clamped or completely simply-supported, but also with mixed external conditions, that can be clamped, supported or free.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.