We present parallel algorithms for mining Correlated Heavy Hitters from a two-dimensional data stream. In particular, we design and implement a message-passing, a shared-memory and a hybrid algorithm. To the best of our knowledge, these are the first parallel algorithms solving the problem. We show, through experimental results, that our algorithms provide very good scalability, whilst retaining the accuracy of their sequential counterpart.

Parallel Mining of Correlated Heavy Hitters on Distributed and Shared-Memory Architectures

Pulimeno M.;Epicoco I.;Cafaro M.
;
Melle C.;Aloisio G.
2019-01-01

Abstract

We present parallel algorithms for mining Correlated Heavy Hitters from a two-dimensional data stream. In particular, we design and implement a message-passing, a shared-memory and a hybrid algorithm. To the best of our knowledge, these are the first parallel algorithms solving the problem. We show, through experimental results, that our algorithms provide very good scalability, whilst retaining the accuracy of their sequential counterpart.
2019
978-1-5386-5035-6
978-1-5386-5036-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/443539
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact