One- and two-dimensional solitons of a multicomponent nonlocal nonlinear Schrödinger (NLS) system are constructed. The model finds applications in nonlinear optics, where it may describe the interaction of optical beams of different frequencies. We asymptotically reduce the model, via multiscale analysis, to completely integrable ones in both Cartesian and cylindrical geometries; we thus derive a Kadomtsev-Petviashvili equation and its cylindrical counterpart, Johnson's equation. This way, we derive approximate soliton solutions of the nonlocal NLS system, which have the form of: (a) dark or antidark soliton stripes and (b) dark lumps in the Cartesian geometry, as well as (c) ring dark or antidark solitons in the cylindrical geometry. The type of the soliton, namely dark or antidark, is determined by the degree of nonlocality: dark (antidark) soliton states are formed for weaker (stronger) nonlocality. We perform numerical simulations and show that the derived soliton solutions do exist and propagate undistorted in the original nonlocal NLS system.

Multiscale expansions and vector solitons of a two-dimensional nonlocal nonlinear Schrödinger system

Prinari B.;
2020-01-01

Abstract

One- and two-dimensional solitons of a multicomponent nonlocal nonlinear Schrödinger (NLS) system are constructed. The model finds applications in nonlinear optics, where it may describe the interaction of optical beams of different frequencies. We asymptotically reduce the model, via multiscale analysis, to completely integrable ones in both Cartesian and cylindrical geometries; we thus derive a Kadomtsev-Petviashvili equation and its cylindrical counterpart, Johnson's equation. This way, we derive approximate soliton solutions of the nonlocal NLS system, which have the form of: (a) dark or antidark soliton stripes and (b) dark lumps in the Cartesian geometry, as well as (c) ring dark or antidark solitons in the cylindrical geometry. The type of the soliton, namely dark or antidark, is determined by the degree of nonlocality: dark (antidark) soliton states are formed for weaker (stronger) nonlocality. We perform numerical simulations and show that the derived soliton solutions do exist and propagate undistorted in the original nonlocal NLS system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/444543
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact