Bivariate modeling and hazard assessment of low flows are performed exploiting copulas. 7-day low flows observed, respectively, in the upper, middle and lower parts of the Çoruh basin (Turkey) are examined, considering three pairs of certified stations located in different sub-basins. A thorough statistical analysis indicates that the GEV distribution can be used to model the marginal behavior of the low-flow. The joint distributions at each part are modeled via a dozen of copula families. As a result, the Husler–Reiss copula adequately fits the joint low flows in the upper part, while the t-Student copula turns out to best fit the other parts. In order to assess the low-flow hazard, these copulas are then used to compute joint return periods and failure probabilities under a critical bivariate “AND” hazard scenario. The results indicate that the middle and lower parts of the Çoruh basin are likely to experience the largest drought hazards. As a novelty, the statistical tools used allow to objectively quantify drought threatening in a thorough multivariate perspective, which involves distributional analysis, frequency analysis (return periods) and hazard analysis (failure probabilities).

Multivariate assessment of low-flow hazards via copulas: The case study of the Çoruh basin (Turkey)

Salvadori G.
;
2020-01-01

Abstract

Bivariate modeling and hazard assessment of low flows are performed exploiting copulas. 7-day low flows observed, respectively, in the upper, middle and lower parts of the Çoruh basin (Turkey) are examined, considering three pairs of certified stations located in different sub-basins. A thorough statistical analysis indicates that the GEV distribution can be used to model the marginal behavior of the low-flow. The joint distributions at each part are modeled via a dozen of copula families. As a result, the Husler–Reiss copula adequately fits the joint low flows in the upper part, while the t-Student copula turns out to best fit the other parts. In order to assess the low-flow hazard, these copulas are then used to compute joint return periods and failure probabilities under a critical bivariate “AND” hazard scenario. The results indicate that the middle and lower parts of the Çoruh basin are likely to experience the largest drought hazards. As a novelty, the statistical tools used allow to objectively quantify drought threatening in a thorough multivariate perspective, which involves distributional analysis, frequency analysis (return periods) and hazard analysis (failure probabilities).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/445552
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact