We find the spectral representation of the selfadjoint operators T T f (lambda) := integral(infinity)(0) K (lambda t) f (t) dt, in L-2(]0, infinity[), where 0 <= K is an element of L-loc(1)(0, infinity). More precisely (see Theorem 4.1) for these operators which include the Laplace transform as a special case, the spectrum of T is a compact interval [-kappa, kappa], and we find explicitly a unitary operator U : L-2(]0, infinity[) -> L-2(R) and a continuous real function alpha on R such that UTU-1 is the operator of multiplication by alpha.
Spectral representation of the weighted Laplace transform
G. Metafune;L. Negro
2020-01-01
Abstract
We find the spectral representation of the selfadjoint operators T T f (lambda) := integral(infinity)(0) K (lambda t) f (t) dt, in L-2(]0, infinity[), where 0 <= K is an element of L-loc(1)(0, infinity). More precisely (see Theorem 4.1) for these operators which include the Laplace transform as a special case, the spectrum of T is a compact interval [-kappa, kappa], and we find explicitly a unitary operator U : L-2(]0, infinity[) -> L-2(R) and a continuous real function alpha on R such that UTU-1 is the operator of multiplication by alpha.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020-Spectral representation of the weighted Laplace transform.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale
Note: Articolo disponibile in open archive sul sito editoriale (https://www.sciencedirect.com/science/article/pii/S0893965919304604)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
635.06 kB
Formato
Adobe PDF
|
635.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.