In this work the ability of “bleached” oil mill solid waste to reduce the dyestuff content in industrial textile wastewater was studied. Bleaching treatment consists in a preliminary oil mill solid waste management with NaOH and NaClO2 for obtaining cellulosic materials, mainly removing lignin from the waste surface. Thus, a novel bioadsorbent from agricultural residues, named bleached olive pomace (OP), was presented. Direct Blue 78 was studied as a model azoic dye. Experiments were planned to study the effect of different initial conditions on the adsorption processes: oil mill waste amount as grains and as a fine powder (OPP), solution temperature values, initial dye concentration, pH values and electrolytes influence. The results showed that the adsorption process using bleached oil mill waste determined an excellent degree of water color reduction, reaching the best work conditions when pH 2 and OPP were used. The presence of electrostatic interactions was also suggested. The adsorption appeared to be influenced by temperature values showing an endothermic character. Interestingly, to confirm the role of ionic interactions between dye and sorbent at pH 2, fashionable results were obtained. The adsorption process was verified also at pH 6 with 100% of dye removal in presence of both NaCl and Na2SO4 avoiding the aforementioned strong acid conditions. A very important aspect of this work is the recycle of both the dye and the adsorbent, with particular attention to the dye reuse for coloring cotton fabric.

Operational parameters affecting the removal and recycling of direct blue industrial dye from wastewater using bleached oil mill waste as alternative adsorbent material

Semeraro, Paola
2017-01-01

Abstract

In this work the ability of “bleached” oil mill solid waste to reduce the dyestuff content in industrial textile wastewater was studied. Bleaching treatment consists in a preliminary oil mill solid waste management with NaOH and NaClO2 for obtaining cellulosic materials, mainly removing lignin from the waste surface. Thus, a novel bioadsorbent from agricultural residues, named bleached olive pomace (OP), was presented. Direct Blue 78 was studied as a model azoic dye. Experiments were planned to study the effect of different initial conditions on the adsorption processes: oil mill waste amount as grains and as a fine powder (OPP), solution temperature values, initial dye concentration, pH values and electrolytes influence. The results showed that the adsorption process using bleached oil mill waste determined an excellent degree of water color reduction, reaching the best work conditions when pH 2 and OPP were used. The presence of electrostatic interactions was also suggested. The adsorption appeared to be influenced by temperature values showing an endothermic character. Interestingly, to confirm the role of ionic interactions between dye and sorbent at pH 2, fashionable results were obtained. The adsorption process was verified also at pH 6 with 100% of dye removal in presence of both NaCl and Na2SO4 avoiding the aforementioned strong acid conditions. A very important aspect of this work is the recycle of both the dye and the adsorbent, with particular attention to the dye reuse for coloring cotton fabric.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/448494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact