This study carries out a quantitative analysis of the impact on microclimate (air temperature and thermal comfort) of a row of 165 historical Pinus pinea L. located in a central neighbourhood of Rome (Italy). The analysis starts from a qualitative general analysis on the stressful conditions leading to tree decline in the urban environment especially during extreme climate change phenomena. Subsequently, the effects of planting new types of trees are assessed using ENVI-met, a 3D prognostic non-hydrostatic model for the simulation of surface-plant-air interactions. Results, obtained by simulating three different scenarios in which the trees are first removed and then modified, show that a gradual renewal of the existing trees, based on priority criteria of maturity or senescence, vegetative and phytosanitary conditions, efficiency of ecosystem services and safety for citizens, has positive effects on thermal comfort. By integrating current results and scientific literature, the final aim of this work is to provide stakeholders with a strategic and systemic planning methodology, which, based on the innovative integrated use of tree management and modelling tools, may (i) enhance the benefits of greening in a scenario of climate change and (ii) lead to intervention strategies based on complementarity between conservation of existing trees and tree renewal.

The challenge in the management of historic trees in urban environments during climate change: The case of corso trieste (Rome, Italy)

Gatto E.
Primo
;
Buccolieri R.
Secondo
;
2021-01-01

Abstract

This study carries out a quantitative analysis of the impact on microclimate (air temperature and thermal comfort) of a row of 165 historical Pinus pinea L. located in a central neighbourhood of Rome (Italy). The analysis starts from a qualitative general analysis on the stressful conditions leading to tree decline in the urban environment especially during extreme climate change phenomena. Subsequently, the effects of planting new types of trees are assessed using ENVI-met, a 3D prognostic non-hydrostatic model for the simulation of surface-plant-air interactions. Results, obtained by simulating three different scenarios in which the trees are first removed and then modified, show that a gradual renewal of the existing trees, based on priority criteria of maturity or senescence, vegetative and phytosanitary conditions, efficiency of ecosystem services and safety for citizens, has positive effects on thermal comfort. By integrating current results and scientific literature, the final aim of this work is to provide stakeholders with a strategic and systemic planning methodology, which, based on the innovative integrated use of tree management and modelling tools, may (i) enhance the benefits of greening in a scenario of climate change and (ii) lead to intervention strategies based on complementarity between conservation of existing trees and tree renewal.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/453413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact