A sustainable and environmentally alternative to commonly used air conditioning systems can be the solar cooling system due to the use of renewable and clean energy. Solar absorption systems can be used for greenhouse cooling in areas with high outdoor temperatures and solar radiation levels. These systems take advantage of the simultaneity between the solar energy availability and the greenhouse cooling demand allowing the reduction of conventional electricity and water consumption. This paper presents the results of the application of a solar cooling plant for the climate control of a greenhouse at the University of Bari, Italy. The experimental plant consists of a Mediterranean greenhouse, having a surface of 300 m2, and of a single effect LiBr-H2O absorption chiller fed by evacuated-tube solar collectors. Two different localized systems were chosen for the distribution of cold inside the greenhouse: the first system presents pipes placed centrally on the cultivation vessels; the second consists of pipes in contact with aluminium plates and of a transparent EVA film, used to border an area close to plants. The distribution system of cold with pipes, plate and EVA film provided a slightly higher cooling capacity due to the presence of the plates which increases the ability to dissipate energy.

Solar cooling: A renewable energy solution

Blanco I.;
2019-01-01

Abstract

A sustainable and environmentally alternative to commonly used air conditioning systems can be the solar cooling system due to the use of renewable and clean energy. Solar absorption systems can be used for greenhouse cooling in areas with high outdoor temperatures and solar radiation levels. These systems take advantage of the simultaneity between the solar energy availability and the greenhouse cooling demand allowing the reduction of conventional electricity and water consumption. This paper presents the results of the application of a solar cooling plant for the climate control of a greenhouse at the University of Bari, Italy. The experimental plant consists of a Mediterranean greenhouse, having a surface of 300 m2, and of a single effect LiBr-H2O absorption chiller fed by evacuated-tube solar collectors. Two different localized systems were chosen for the distribution of cold inside the greenhouse: the first system presents pipes placed centrally on the cultivation vessels; the second consists of pipes in contact with aluminium plates and of a transparent EVA film, used to border an area close to plants. The distribution system of cold with pipes, plate and EVA film provided a slightly higher cooling capacity due to the presence of the plates which increases the ability to dissipate energy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/457659
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact