The exponential increase of waste derived from different human activities points out the importance of their reuse in order to create materials with specific properties that can be used for different applications. In this work, it was showed how the typical Mediterranean organic liquid waste, namely olive mill wastewater (OMWW), obtained during olive oil production, can be turned into an efficient reactive agent for the production of noble metals gold (Au) and silver nanoparticles (Ag NPs) with very well-defined physico-chemical properties. More than that, it was demonstrated that this synthetic procedure also leads to a drastic decrease of the organic pollution load of the OMWW, making it safer for environmental disposal and plants irrigation. Then, using healthy hepatic cell line mitochondria, the biological effects induced by these green metal NPs surrounded by a polyphenols shell, with the same NPs synthetized through a standard chemical colloidal reduction process, were compared, finding out that the green NPs are much safer. Graphical abstract: [Figure not available: see fulltext.].
Purification of olive mill wastewater through noble metal nanoparticle synthesis: waste safe disposal and nanomaterial impact on healthy hepatic cell mitochondria
De Matteis V.
;Ingrosso C.;
2021-01-01
Abstract
The exponential increase of waste derived from different human activities points out the importance of their reuse in order to create materials with specific properties that can be used for different applications. In this work, it was showed how the typical Mediterranean organic liquid waste, namely olive mill wastewater (OMWW), obtained during olive oil production, can be turned into an efficient reactive agent for the production of noble metals gold (Au) and silver nanoparticles (Ag NPs) with very well-defined physico-chemical properties. More than that, it was demonstrated that this synthetic procedure also leads to a drastic decrease of the organic pollution load of the OMWW, making it safer for environmental disposal and plants irrigation. Then, using healthy hepatic cell line mitochondria, the biological effects induced by these green metal NPs surrounded by a polyphenols shell, with the same NPs synthetized through a standard chemical colloidal reduction process, were compared, finding out that the green NPs are much safer. Graphical abstract: [Figure not available: see fulltext.].I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.