Conditions for the emergence of strong Turing-Hopf instabilities in the Lengyel-Epstein CIMA reaction-diffusion model are found. Under these conditions, time periodic spatially inhomogeneous solutions can be induced by diffusive instability of the spatially homogeneous limit cycle emerging at a supercritical Bautin-Hopf bifurcation about the unstable steady state of the reaction system. We report numerical simulations by an Alternating Directions Implicit (ADI) method that show the formation of twinkling patterns for a chosen parameter value, thus confirming our theoretical results.

Bifurcations in Twinkling Patterns for the Lengyel-Epstein Reaction-Diffusion Model

Sgura I.;
2021-01-01

Abstract

Conditions for the emergence of strong Turing-Hopf instabilities in the Lengyel-Epstein CIMA reaction-diffusion model are found. Under these conditions, time periodic spatially inhomogeneous solutions can be induced by diffusive instability of the spatially homogeneous limit cycle emerging at a supercritical Bautin-Hopf bifurcation about the unstable steady state of the reaction system. We report numerical simulations by an Alternating Directions Implicit (ADI) method that show the formation of twinkling patterns for a chosen parameter value, thus confirming our theoretical results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/460458
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact