We establish some properties of the bilateral Riemann–Liouville fractional derivative $D^s$. We set the notation, and study the associated Sobolev spaces of fractional order s, denoted by $W^{s,1}(a, b)$, and the fractional bounded variation spaces of fractional order s, denoted by $BV^s(a, b)$. Examples, embeddings and compactness properties related to these spaces are addressed, aiming to set a functional framework suitable for fractional variational models for image analysis.

Riemann–Liouville Fractional Sobolev and Bounded Variation Spaces

Antonio Leaci
;
Franco Tomarelli
2022-01-01

Abstract

We establish some properties of the bilateral Riemann–Liouville fractional derivative $D^s$. We set the notation, and study the associated Sobolev spaces of fractional order s, denoted by $W^{s,1}(a, b)$, and the fractional bounded variation spaces of fractional order s, denoted by $BV^s(a, b)$. Examples, embeddings and compactness properties related to these spaces are addressed, aiming to set a functional framework suitable for fractional variational models for image analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/460598
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact