Ensuring optimum interior lighting is a topic of great importance, as this influences not only the well‐being of users but also the optimal performance of visual tasks. Lighting can be natural, but if not sufficient, it can be compensated with artificial lighting. This study highlights a methodology for designing a new lighting system that takes into account both technical and economic aspects. The method was applied to an existing school located in southern Italy, in which the electricity consumption is related to the current lighting system. The school is chosen as being representative of the construction type and layout of many local schools. In addition, the coexistence of several visual tasks with different design requisites (e.g., illuminance levels) makes the school a very complex environment. The school lighting is modelled in Google SketchUp and imported into Daysim to simulate the yearly and hourly daylight indoor contribution. Dialux Evo has been used to simulate and design artificial lighting. The results show a reduction of energy consumption of 33% with the simple replacement of fluorescent luminaires with LEDs, while the LED lamp dimming and modulation for rows of luminaires leads to a 95% reduction in energy consumption compared with the current state.

Technical‐economic evaluation of the effectiveness of measures applied to the artificial lighting system of a school

Baglivo C.;Congedo P. M.;
2021-01-01

Abstract

Ensuring optimum interior lighting is a topic of great importance, as this influences not only the well‐being of users but also the optimal performance of visual tasks. Lighting can be natural, but if not sufficient, it can be compensated with artificial lighting. This study highlights a methodology for designing a new lighting system that takes into account both technical and economic aspects. The method was applied to an existing school located in southern Italy, in which the electricity consumption is related to the current lighting system. The school is chosen as being representative of the construction type and layout of many local schools. In addition, the coexistence of several visual tasks with different design requisites (e.g., illuminance levels) makes the school a very complex environment. The school lighting is modelled in Google SketchUp and imported into Daysim to simulate the yearly and hourly daylight indoor contribution. Dialux Evo has been used to simulate and design artificial lighting. The results show a reduction of energy consumption of 33% with the simple replacement of fluorescent luminaires with LEDs, while the LED lamp dimming and modulation for rows of luminaires leads to a 95% reduction in energy consumption compared with the current state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/463861
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact