The Ampelovirus Grapevine leafroll-associated virus 3 (GLRaV-3) and the Nepovirus Grapevine fanleaf virus (GFLV) are pathogens reported in many grapevine-growing areas all over the world, main causal agents of grapevine leafroll disease and grapevine fanleaf disease, respectively. Prevention of virus spread thanks to rapid diagnosis of infected plants is a key factor for control of both diseases. Although serological (e.g., enzyme-linked immunosorbent assay-ELISA test) and molecular methods are available to reveal the presence of the viruses, they turn out to be quite expensive, time-consuming and laborious, especially for large-scale health screening. Here we report the optimization of a lab-on-a-chip (LOC) for GLRaV-3 and GFLV detection, based on an electrochemical transduction and a microfluidic multichamber design for measurements in quadruplicate and simultaneous detection of both targets. The LOC detect GLRaV-3 and GFLV at dilution factors more than 15 times higher than ELISA, providing a higher sensitivity in the detection of both viruses. Furthermore, the platform offers several advantages as easy-to-use, rapid-test, portability and low costs, favoring its potential application for large-scale monitoring programs. Compared to other grapevine virus biosensors, our sensing platform is the first one to provide a dose-dependent calibration curve combined with a microfluidic module for sample analysis and a portable electronics providing an operator-independent read-out scheme.
Detection of Ampelovirus and Nepovirus by Lab-on-a-Chip: A Promising Alternative to ELISA Test for Large Scale Health Screening of Grapevine
Buja I.Primo
;Sabella E.Secondo
;Monteduro A. G.;Rizzato S.;De Bellis L.;Luvisi A.
Penultimo
;Maruccio G.Ultimo
2022-01-01
Abstract
The Ampelovirus Grapevine leafroll-associated virus 3 (GLRaV-3) and the Nepovirus Grapevine fanleaf virus (GFLV) are pathogens reported in many grapevine-growing areas all over the world, main causal agents of grapevine leafroll disease and grapevine fanleaf disease, respectively. Prevention of virus spread thanks to rapid diagnosis of infected plants is a key factor for control of both diseases. Although serological (e.g., enzyme-linked immunosorbent assay-ELISA test) and molecular methods are available to reveal the presence of the viruses, they turn out to be quite expensive, time-consuming and laborious, especially for large-scale health screening. Here we report the optimization of a lab-on-a-chip (LOC) for GLRaV-3 and GFLV detection, based on an electrochemical transduction and a microfluidic multichamber design for measurements in quadruplicate and simultaneous detection of both targets. The LOC detect GLRaV-3 and GFLV at dilution factors more than 15 times higher than ELISA, providing a higher sensitivity in the detection of both viruses. Furthermore, the platform offers several advantages as easy-to-use, rapid-test, portability and low costs, favoring its potential application for large-scale monitoring programs. Compared to other grapevine virus biosensors, our sensing platform is the first one to provide a dose-dependent calibration curve combined with a microfluidic module for sample analysis and a portable electronics providing an operator-independent read-out scheme.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.