Considerable efforts are underway to rationally design and synthesize novel electrode materials for high-performance supercapacitors (SCs). However, the creation of suitable materials with high capacitance remains a big challenge for energy storage devices. Herein, unique three-dimensional (3D) ZnO hexagonal cubes on carbon cloth (ZnO@CC) were synthesized by invoking a facile and economical hydrothermal method. The mesoporous ZnO@CC electrode, by virtue of its high surface area, offers rich electroactive sites for the fast diffusion of electrolyte ions, resulting in the enhancement of the SC's performance. The ZnO@CC electrode demonstrated a high specific capacitance of 352.5 and 250 F g-1 at 2 and 20 A g-1, respectively. The ZnO@CC electrode revealed a decent stability of 84% over 5000 cycles at 20 A g-1 and an outstanding rate-capability of 71% at a 10-fold high current density with respect to 2 A g-1. Thus, the ZnO@CC electrode demonstrated improved electrochemical performance, signifying that ZnO as is promising candidate for SCs applications.
Binder-Free Porous 3D-ZnO Hexagonal-Cubes for Electrochemical Energy Storage Applications
Patrizia Bocchetta
Ultimo
2022-01-01
Abstract
Considerable efforts are underway to rationally design and synthesize novel electrode materials for high-performance supercapacitors (SCs). However, the creation of suitable materials with high capacitance remains a big challenge for energy storage devices. Herein, unique three-dimensional (3D) ZnO hexagonal cubes on carbon cloth (ZnO@CC) were synthesized by invoking a facile and economical hydrothermal method. The mesoporous ZnO@CC electrode, by virtue of its high surface area, offers rich electroactive sites for the fast diffusion of electrolyte ions, resulting in the enhancement of the SC's performance. The ZnO@CC electrode demonstrated a high specific capacitance of 352.5 and 250 F g-1 at 2 and 20 A g-1, respectively. The ZnO@CC electrode revealed a decent stability of 84% over 5000 cycles at 20 A g-1 and an outstanding rate-capability of 71% at a 10-fold high current density with respect to 2 A g-1. Thus, the ZnO@CC electrode demonstrated improved electrochemical performance, signifying that ZnO as is promising candidate for SCs applications.File | Dimensione | Formato | |
---|---|---|---|
materials-15-02250-binder free ZnO.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
2.87 MB
Formato
Adobe PDF
|
2.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.