A general theory of LS algebras over a multiposet is developed. As a main result, the existence of a flat deformation to discrete algebras is obtained. This is applied to the multicone over partial flag varieties for Kac-Moody groups proving a deformation theorem to a union of toric varieties. In order to achieve the Cohen-Macaulayness of the multicone we show that Bruhat posets (defined as glueing of minimal representatives modulo parabolic subgroups of a Weyl group) are lexicographically shellable.
Deformation and Cohen-Macaulayness of the multicone over the flag variety
Chirivi' Rocco
2001-01-01
Abstract
A general theory of LS algebras over a multiposet is developed. As a main result, the existence of a flat deformation to discrete algebras is obtained. This is applied to the multicone over partial flag varieties for Kac-Moody groups proving a deformation theorem to a union of toric varieties. In order to achieve the Cohen-Macaulayness of the multicone we show that Bruhat posets (defined as glueing of minimal representatives modulo parabolic subgroups of a Weyl group) are lexicographically shellable.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.