This Article investigates whether all stakeholder groups share the same understanding and use of the relevant terms and concepts of the DSA and DMA. Leveraging the power of computational text analysis, we find significant differences in the employment of terms like “gatekeepers,” “self-preferencing,” “collusion,” and others in the position papers of the consultation process that informed the drafting of the two latest Commission proposals. Added to that, sentiment analysis shows that in some cases these differences also come with dissimilar attitudes. While this may not be surprising for new concepts such as gatekeepers or self-preferencing, the same is not true for other terms, like “self-regulatory,” which not only is used differently by stakeholders but is also viewed more favorably by medium and big companies and organizations than by small ones. We conclude by sketching out how different computational text analysis tools, could be combined to provide many helpful insights for both rulemakers and legal scholars.

Artificial intelligence and competition law. A computational analysis of the DMA and DSA

Di Porto, Fabiana
;
2021-01-01

Abstract

This Article investigates whether all stakeholder groups share the same understanding and use of the relevant terms and concepts of the DSA and DMA. Leveraging the power of computational text analysis, we find significant differences in the employment of terms like “gatekeepers,” “self-preferencing,” “collusion,” and others in the position papers of the consultation process that informed the drafting of the two latest Commission proposals. Added to that, sentiment analysis shows that in some cases these differences also come with dissimilar attitudes. While this may not be surprising for new concepts such as gatekeepers or self-preferencing, the same is not true for other terms, like “self-regulatory,” which not only is used differently by stakeholders but is also viewed more favorably by medium and big companies and organizations than by small ones. We conclude by sketching out how different computational text analysis tools, could be combined to provide many helpful insights for both rulemakers and legal scholars.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/468497
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact