In this study, the formation of the adult sea urchin shape is rationalized within the Turing's theory paradigm. The emergence of protrusions from the expanding underlying surface is described through a reaction-diffusion model with Gray-Scott kinetics on a growing oblate spheroid. The case of slow exponential isotropic growth is considered. The model is first studied in terms of the spatially homogenous equilibria and of the bifurcations involved. Turing diffusion-driven instability is shown to occur and the impact of the slow exponential growth on the resulting Turing regions adequately discussed. Numerical investigations validate the theoretical results showing that the combination between an inhibitor and an activator can result in a distribution of spot concentrations that underlies the development of ambulacral tentacles in the sea urchin's adult stage. Our findings pave the way for a model-driven experimentation that could improve the current biological understanding of the gene control networks involved in patterning.
Pattern formation on a growing oblate spheroid. An application to adult sea urchin development
Lacitignola, D.
;Frittelli, M.;
2022-01-01
Abstract
In this study, the formation of the adult sea urchin shape is rationalized within the Turing's theory paradigm. The emergence of protrusions from the expanding underlying surface is described through a reaction-diffusion model with Gray-Scott kinetics on a growing oblate spheroid. The case of slow exponential isotropic growth is considered. The model is first studied in terms of the spatially homogenous equilibria and of the bifurcations involved. Turing diffusion-driven instability is shown to occur and the impact of the slow exponential growth on the resulting Turing regions adequately discussed. Numerical investigations validate the theoretical results showing that the combination between an inhibitor and an activator can result in a distribution of spot concentrations that underlies the development of ambulacral tentacles in the sea urchin's adult stage. Our findings pave the way for a model-driven experimentation that could improve the current biological understanding of the gene control networks involved in patterning.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.