Sensitization to pollen allergens has been increasing in Europe every year. Most studies in this field are related to climate change, phenology, allergens associated with different pollens, and allergic disorders. As a plant microhabitat, pollen is colonized by diverse microorganisms, including endotoxin-producing bacteria which may contribute to pollen allergy (pollinosis). Therefore, bacteria isolated from high allergenic and low allergenic plant pollen, as well as the pollen itself with all microbial inhabitants, were used to assess the effect of the pollen by measuring the endotoxins lipopolysaccharides (LPS) and lipoteichoic acid (LTA) concentrations and their effect on chemokine and cytokine release from transwell cultured epithelial A549 cells as a model of epithelial lung barrier. High allergenic pollen showed a significantly higher level of bacterial endotoxins; interestingly, the endotoxin level found in the bacterial isolates from high allergenic pollen was significantly higher compared to that of bacteria from low allergenic pollen. Moreover, bacterial LPS concentrations across different pollen species positively correlated with the LPS concentration across their corresponding bacterial isolates. Selected bacterial isolates from hazel pollen (HA5, HA13, and HA7) co-cultured with A549 cells induced a potent concentration-dependent release of the chemokine interleukin-8 and monocyte chemotactic protein-1 as well as the cytokine TNF-alpha and interleukin-2 to both apical and basal compartments of the transwell model. This study clearly shows the role of bacteria and bacterial endotoxins in the pollen allergy as well as seasonal allergic rhinitis.
Bacterial Species Associated with Highly Allergenic Plant Pollen Yield a High Level of Endotoxins and Induce Chemokine and Cytokine Release from Human A549 Cells
Cardinale, MassimilianoConceptualization
;
2022-01-01
Abstract
Sensitization to pollen allergens has been increasing in Europe every year. Most studies in this field are related to climate change, phenology, allergens associated with different pollens, and allergic disorders. As a plant microhabitat, pollen is colonized by diverse microorganisms, including endotoxin-producing bacteria which may contribute to pollen allergy (pollinosis). Therefore, bacteria isolated from high allergenic and low allergenic plant pollen, as well as the pollen itself with all microbial inhabitants, were used to assess the effect of the pollen by measuring the endotoxins lipopolysaccharides (LPS) and lipoteichoic acid (LTA) concentrations and their effect on chemokine and cytokine release from transwell cultured epithelial A549 cells as a model of epithelial lung barrier. High allergenic pollen showed a significantly higher level of bacterial endotoxins; interestingly, the endotoxin level found in the bacterial isolates from high allergenic pollen was significantly higher compared to that of bacteria from low allergenic pollen. Moreover, bacterial LPS concentrations across different pollen species positively correlated with the LPS concentration across their corresponding bacterial isolates. Selected bacterial isolates from hazel pollen (HA5, HA13, and HA7) co-cultured with A549 cells induced a potent concentration-dependent release of the chemokine interleukin-8 and monocyte chemotactic protein-1 as well as the cytokine TNF-alpha and interleukin-2 to both apical and basal compartments of the transwell model. This study clearly shows the role of bacteria and bacterial endotoxins in the pollen allergy as well as seasonal allergic rhinitis.File | Dimensione | Formato | |
---|---|---|---|
Ambika Manirajan et al., 2022.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.