In this paper we investigate the spectra and the ergodic properties of the multiplication operators and the convolution operators acting on the Schwartz space $\matcal{S}(\mathbb{R})$ of rapidly decreasing functions, i.e., operators of the form $M_h : \mathcal{S}(\mathbb{R})\to \mathcal{S}(\mathbb{R})$, $f \mapsto hf$, and $C_T : \mathcal{S}(\mathbb{R})$\to \mathcal{S}(\mathbb{R})$, $f \mapstoT\star f$. Precisely, we determine their spectra and characterize when those operators are power bounded and mean ergodic.
Spectra and ergodic properties of multiplication and convolution operators on the space $\mathcal{S}(\mathbb{R})$
A. A. Albanese
Membro del Collaboration Group
;C. MeleMembro del Collaboration Group
2022-01-01
Abstract
In this paper we investigate the spectra and the ergodic properties of the multiplication operators and the convolution operators acting on the Schwartz space $\matcal{S}(\mathbb{R})$ of rapidly decreasing functions, i.e., operators of the form $M_h : \mathcal{S}(\mathbb{R})\to \mathcal{S}(\mathbb{R})$, $f \mapsto hf$, and $C_T : \mathcal{S}(\mathbb{R})$\to \mathcal{S}(\mathbb{R})$, $f \mapstoT\star f$. Precisely, we determine their spectra and characterize when those operators are power bounded and mean ergodic.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Albanese-Mele202_Article_SpectrumOfTheCesàroOperator.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
390.76 kB
Formato
Adobe PDF
|
390.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.