We prove the Gamma-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s -> 1(-). Our definition of fractional perimeter comes from that of the fractional powers of Ornstein Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Gamma-limit does not depend on the dimension.

Gamma-convergence of Gaussian fractional perimeter

Carbotti A.;Cito S.;Pallara D.
2023-01-01

Abstract

We prove the Gamma-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s -> 1(-). Our definition of fractional perimeter comes from that of the fractional powers of Ornstein Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Gamma-limit does not depend on the dimension.
File in questo prodotto:
File Dimensione Formato  
CarCitLamPal21AdvCV.pdf

non disponibili

Descrizione: Lavoro
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 5.03 MB
Formato Adobe PDF
5.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/476105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact