In this research, the optimum growth conditions for two zinc solubilizing bacteria (ZSB) have been studied for their potential application as bioinoculants to overcome Zn unavailability in soils. For this purpose, a laboratory-scale experiment was carried out to evaluate the zinc solubilizing ability of 80 plant growth promoting bacteria (PGPB) strains isolated from the rhizosphere of barley and tomato plants. To select effective ZSB, isolates were evaluated on Tris-mineral medium supplemented separately with zinc oxide, zinc carbonate, and zinc phosphate at a concentration of 0.1%. Two strains (Agrobacterium tumefaciens and Rhizobium sp.) were selected, based on a clear halo zone around their colonies in the solid medium supplemented with zinc oxide after 10 days of incubation at 29 °C. Results of solubilization at different pH values showed that these strains had solubilization activity in the range of pH 8–10 while no solubilization was observed at pH 6 and 7. The maximum Zn solubilization values were noted at pH 9: 51.4 mg L−1 (Agrobacterium tumefaciens) and 72.1 mg L−1 (Rhizobium sp). According to findings, bacterial growth was affected by different NaCl concentrations under in vitro condition. The salt concentration required for 50% inhibition of absorbance was 2.11 and 2.27% NaCl for Agrobacterium tumefaciens and Rhizobium sp., respectively. The maximum bacterial growth was observed at about 0.8% NaCl concentration.

Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions

Allegretta I.;
2018-01-01

Abstract

In this research, the optimum growth conditions for two zinc solubilizing bacteria (ZSB) have been studied for their potential application as bioinoculants to overcome Zn unavailability in soils. For this purpose, a laboratory-scale experiment was carried out to evaluate the zinc solubilizing ability of 80 plant growth promoting bacteria (PGPB) strains isolated from the rhizosphere of barley and tomato plants. To select effective ZSB, isolates were evaluated on Tris-mineral medium supplemented separately with zinc oxide, zinc carbonate, and zinc phosphate at a concentration of 0.1%. Two strains (Agrobacterium tumefaciens and Rhizobium sp.) were selected, based on a clear halo zone around their colonies in the solid medium supplemented with zinc oxide after 10 days of incubation at 29 °C. Results of solubilization at different pH values showed that these strains had solubilization activity in the range of pH 8–10 while no solubilization was observed at pH 6 and 7. The maximum Zn solubilization values were noted at pH 9: 51.4 mg L−1 (Agrobacterium tumefaciens) and 72.1 mg L−1 (Rhizobium sp). According to findings, bacterial growth was affected by different NaCl concentrations under in vitro condition. The salt concentration required for 50% inhibition of absorbance was 2.11 and 2.27% NaCl for Agrobacterium tumefaciens and Rhizobium sp., respectively. The maximum bacterial growth was observed at about 0.8% NaCl concentration.
File in questo prodotto:
File Dimensione Formato  
Yaghoubi et al 2018.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/476498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? ND
social impact