Initially, pristine polymers were used to develop corrosion-resistant coatings. Later, the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently, polymer/graphene nanocomposites have been applied for erosion protection applications. Among polymers, conducting polymers (polyaniline, polypyrrole, polythiophene, etc.) and nonconducting polymers (epoxy, poly(methyl methacrylate), etc.) have been used as matrices for anticorrosion graphene nanocomposites. The corrosion-resistant polymer/graphene nanocomposites have found several important applications in biomedical fields such as biocompatible materials, biodegradable materials, bioimplants, tissue engineering, and drug delivery. The biomedical performance of the nanomaterials depends on the graphene dispersion and interaction with the polymers and living systems. Future research on the anti-corrosion polymer/graphene nanocomposite is desirable to perceive further advanced applications in the biomedical arenas.
High-Performance Corrosion-Resistant Polymer/Graphene Nanomaterials for Biomedical Relevance
Patrizia Bocchetta
Ultimo
Writing – Review & Editing
2022-01-01
Abstract
Initially, pristine polymers were used to develop corrosion-resistant coatings. Later, the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently, polymer/graphene nanocomposites have been applied for erosion protection applications. Among polymers, conducting polymers (polyaniline, polypyrrole, polythiophene, etc.) and nonconducting polymers (epoxy, poly(methyl methacrylate), etc.) have been used as matrices for anticorrosion graphene nanocomposites. The corrosion-resistant polymer/graphene nanocomposites have found several important applications in biomedical fields such as biocompatible materials, biodegradable materials, bioimplants, tissue engineering, and drug delivery. The biomedical performance of the nanomaterials depends on the graphene dispersion and interaction with the polymers and living systems. Future research on the anti-corrosion polymer/graphene nanocomposite is desirable to perceive further advanced applications in the biomedical arenas.File | Dimensione | Formato | |
---|---|---|---|
High-Performance Corrosion-Resistant 2023.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
5.36 MB
Formato
Adobe PDF
|
5.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.