Initially, pristine polymers were used to develop corrosion-resistant coatings. Later, the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently, polymer/graphene nanocomposites have been applied for erosion protection applications. Among polymers, conducting polymers (polyaniline, polypyrrole, polythiophene, etc.) and nonconducting polymers (epoxy, poly(methyl methacrylate), etc.) have been used as matrices for anticorrosion graphene nanocomposites. The corrosion-resistant polymer/graphene nanocomposites have found several important applications in biomedical fields such as biocompatible materials, biodegradable materials, bioimplants, tissue engineering, and drug delivery. The biomedical performance of the nanomaterials depends on the graphene dispersion and interaction with the polymers and living systems. Future research on the anti-corrosion polymer/graphene nanocomposite is desirable to perceive further advanced applications in the biomedical arenas.

High-Performance Corrosion-Resistant Polymer/Graphene Nanomaterials for Biomedical Relevance

Patrizia Bocchetta
Ultimo
Writing – Review & Editing
2022-01-01

Abstract

Initially, pristine polymers were used to develop corrosion-resistant coatings. Later, the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently, polymer/graphene nanocomposites have been applied for erosion protection applications. Among polymers, conducting polymers (polyaniline, polypyrrole, polythiophene, etc.) and nonconducting polymers (epoxy, poly(methyl methacrylate), etc.) have been used as matrices for anticorrosion graphene nanocomposites. The corrosion-resistant polymer/graphene nanocomposites have found several important applications in biomedical fields such as biocompatible materials, biodegradable materials, bioimplants, tissue engineering, and drug delivery. The biomedical performance of the nanomaterials depends on the graphene dispersion and interaction with the polymers and living systems. Future research on the anti-corrosion polymer/graphene nanocomposite is desirable to perceive further advanced applications in the biomedical arenas.
File in questo prodotto:
File Dimensione Formato  
High-Performance Corrosion-Resistant 2023.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 5.36 MB
Formato Adobe PDF
5.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/477746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact