Let X be a separable Banach space endowed with a nondegenerate centered Gaussian measure μ and let w be a positive function on X such that w W1,s(X,μ) and log w ∈W1,t(X,μ) for some s > 1 and t > s′. In this paper, we introduce and study Sobolev spaces with respect to the weighted Gaussian measure ν:= wμ. We obtain results regarding the divergence operator (i.e. the adjoint in L2 of the gradient operator along the Cameron-Martin space) and the trace of Sobolev functions on hypersurfaces x ∈X|G(x) = 0, where G is a suitable version of a Sobolev function.

Sobolev spaces with respect to a weighted Gaussian measure in infinite dimensions

Ferrari S.
2020-01-01

Abstract

Let X be a separable Banach space endowed with a nondegenerate centered Gaussian measure μ and let w be a positive function on X such that w W1,s(X,μ) and log w ∈W1,t(X,μ) for some s > 1 and t > s′. In this paper, we introduce and study Sobolev spaces with respect to the weighted Gaussian measure ν:= wμ. We obtain results regarding the divergence operator (i.e. the adjoint in L2 of the gradient operator along the Cameron-Martin space) and the trace of Sobolev functions on hypersurfaces x ∈X|G(x) = 0, where G is a suitable version of a Sobolev function.
File in questo prodotto:
File Dimensione Formato  
s0219025719500267.pdf

non disponibili

Descrizione: Articolo su rivista
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 438.78 kB
Formato Adobe PDF
438.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/479645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact