Let X be a separable Banach space endowed with a nondegenerate centered Gaussian measure μ and let w be a positive function on X such that w W1,s(X,μ) and log w ∈W1,t(X,μ) for some s > 1 and t > s′. In this paper, we introduce and study Sobolev spaces with respect to the weighted Gaussian measure ν:= wμ. We obtain results regarding the divergence operator (i.e. the adjoint in L2 of the gradient operator along the Cameron-Martin space) and the trace of Sobolev functions on hypersurfaces x ∈X|G(x) = 0, where G is a suitable version of a Sobolev function.
Sobolev spaces with respect to a weighted Gaussian measure in infinite dimensions
Ferrari S.
2020-01-01
Abstract
Let X be a separable Banach space endowed with a nondegenerate centered Gaussian measure μ and let w be a positive function on X such that w W1,s(X,μ) and log w ∈W1,t(X,μ) for some s > 1 and t > s′. In this paper, we introduce and study Sobolev spaces with respect to the weighted Gaussian measure ν:= wμ. We obtain results regarding the divergence operator (i.e. the adjoint in L2 of the gradient operator along the Cameron-Martin space) and the trace of Sobolev functions on hypersurfaces x ∈X|G(x) = 0, where G is a suitable version of a Sobolev function.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s0219025719500267.pdf
non disponibili
Descrizione: Articolo su rivista
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
438.78 kB
Formato
Adobe PDF
|
438.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.