We study the equivalence under renorming of several geometric and topological properties of the unit sphere of a Banach space with respect to weak topologies. The geometric properties considered are stronger forms of rotundity and the topological properties are generalizations of metrizability. In the case of dual Banach spaces endowed with the weak∗ topology our results provide a full understanding of the rotund case and complement our previous work on w∗-LUR renorming.
Generalized metric properties of spheres and renorming of Banach spaces
Ferrari S.;
2019-01-01
Abstract
We study the equivalence under renorming of several geometric and topological properties of the unit sphere of a Banach space with respect to weak topologies. The geometric properties considered are stronger forms of rotundity and the topological properties are generalizations of metrizability. In the case of dual Banach spaces endowed with the weak∗ topology our results provide a full understanding of the rotund case and complement our previous work on w∗-LUR renorming.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ferrari2019_Article_GeneralizedMetricPropertiesOfS.pdf
solo utenti autorizzati
Descrizione: Articolo su rivista
Tipologia:
Versione editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
247.67 kB
Formato
Adobe PDF
|
247.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.