The growing concern for the environment and the depletion of raw materials such as fossil fuels is driving research towards the exploitation of new materials and the development of new technologies. Phase-change materials (PCMs) are increasingly used to reduce the energy required for the heating/cooling of buildings. The biggest challenge is to find a PCM with suitable characteristics able to meet the needs of the different climates in which it is placed. The originality of our research, therefore, lies in the possibility of selecting the most appropriate polymer to produce a PCM suitable for different climatic conditions that characterize the area in which a building is located. Furthermore, the proposed form-stable PCMs were obtained by including low-toxic, low-flammability polymers in waste stone fragments, according to the principles of a circular economy. These original sustainable PCMs were then used as aggregates by adding them to mortars (based on air lime, hydraulic lime, cement and gypsum). The mortars containing the PCMs were analyzed in fresh (workability) and hardened (flexural and compressive strengths and thermal characteristics) states. The results obtained showed that although the inclusion of PCM reduced the mechanical properties of the mortars, good mechanical properties can be still achieved by using an adequate binder content. The produced mortars were also analyzed by thermal analysis to assess how the addition of a PEG-based PCM affected their thermal behavior. The original PCMs were proven to be effective in improving the indoor temperature when included in mortars applied as plasters.

Development and performance of eco-sustainable form-stable Phase Change Materials (PCMs) for mortars to be applied in buildings located in different climatic areas

Mariaenrica Frigione
;
Antonella Sarcinella;
2023-01-01

Abstract

The growing concern for the environment and the depletion of raw materials such as fossil fuels is driving research towards the exploitation of new materials and the development of new technologies. Phase-change materials (PCMs) are increasingly used to reduce the energy required for the heating/cooling of buildings. The biggest challenge is to find a PCM with suitable characteristics able to meet the needs of the different climates in which it is placed. The originality of our research, therefore, lies in the possibility of selecting the most appropriate polymer to produce a PCM suitable for different climatic conditions that characterize the area in which a building is located. Furthermore, the proposed form-stable PCMs were obtained by including low-toxic, low-flammability polymers in waste stone fragments, according to the principles of a circular economy. These original sustainable PCMs were then used as aggregates by adding them to mortars (based on air lime, hydraulic lime, cement and gypsum). The mortars containing the PCMs were analyzed in fresh (workability) and hardened (flexural and compressive strengths and thermal characteristics) states. The results obtained showed that although the inclusion of PCM reduced the mechanical properties of the mortars, good mechanical properties can be still achieved by using an adequate binder content. The produced mortars were also analyzed by thermal analysis to assess how the addition of a PEG-based PCM affected their thermal behavior. The original PCMs were proven to be effective in improving the indoor temperature when included in mortars applied as plasters.
File in questo prodotto:
File Dimensione Formato  
coatings-13-00258.pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 804.19 kB
Formato Adobe PDF
804.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/480964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact