Graphene is a unique nanocarbon nanostructure, which has been frequently used to form nanocomposites. Green-synthesized graphene has been focused due to environmentally friendly requirements in recent technological sectors. A very important application of green-synthesized graphene-based nanocomposite has been observed in energy storage devices. This state-of-the-art review highlights design, features, and advanced functions of polymer/green-synthesized graphene nanocomposites and their utility in supercapacitor components. Green graphene-derived nanocomposites brought about numerous revolutions in high-performance supercapacitors. The structural diversity of conjugated polymer and green graphene-based nanocomposites has facilitated the charge transportation/storage capacity, specific capacitance, capacitance retention, cyclability, and durability of supercapacitor electrodes. Moreover, the green method, graphene functionality, dispersion, and matrix–nanofiller interactions have affected supercapacitance properties and performance. Future research on innovative polymer and green graphene-derived nanocomposites may overcome design/performance-related challenging factors for technical usages.
Green-Synthesized Graphene for Supercapacitors—Modern Perspectives
Meenal Gupta;Patrizia Bocchetta
Writing – Review & Editing
2023-01-01
Abstract
Graphene is a unique nanocarbon nanostructure, which has been frequently used to form nanocomposites. Green-synthesized graphene has been focused due to environmentally friendly requirements in recent technological sectors. A very important application of green-synthesized graphene-based nanocomposite has been observed in energy storage devices. This state-of-the-art review highlights design, features, and advanced functions of polymer/green-synthesized graphene nanocomposites and their utility in supercapacitor components. Green graphene-derived nanocomposites brought about numerous revolutions in high-performance supercapacitors. The structural diversity of conjugated polymer and green graphene-based nanocomposites has facilitated the charge transportation/storage capacity, specific capacitance, capacitance retention, cyclability, and durability of supercapacitor electrodes. Moreover, the green method, graphene functionality, dispersion, and matrix–nanofiller interactions have affected supercapacitance properties and performance. Future research on innovative polymer and green graphene-derived nanocomposites may overcome design/performance-related challenging factors for technical usages.File | Dimensione | Formato | |
---|---|---|---|
jcs-07-00108.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
7.81 MB
Formato
Adobe PDF
|
7.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.