The growing interest in bio-inspired materials is driven by the need for increasingly targeted and efficient devices that also have a low ecological impact. These devices often use specially developed materials (e.g., polymers, aptamers, monoclonal antibodies) capable of carrying out the process of recognizing and capturing a specific target in a similar way to biomaterials of natural origin. In this article, we present two case studies, in which the target is a biomolecule of medical interest, in particular, alpha-thrombin and cytokine IL-6. In these examples, different biomaterials are compared to establish, with a theoretical-computational procedure known as proteotronics, which of them has the greatest potential for use in a biodevice.
Bioinspired Materials for Sensor and Clinical Applications: Two Case Studies
Eleonora Alfinito
;Giuseppe Maruccio;Anna Grazia Monteduro;Silvia Rizzato
2023-01-01
Abstract
The growing interest in bio-inspired materials is driven by the need for increasingly targeted and efficient devices that also have a low ecological impact. These devices often use specially developed materials (e.g., polymers, aptamers, monoclonal antibodies) capable of carrying out the process of recognizing and capturing a specific target in a similar way to biomaterials of natural origin. In this article, we present two case studies, in which the target is a biomolecule of medical interest, in particular, alpha-thrombin and cytokine IL-6. In these examples, different biomaterials are compared to establish, with a theoretical-computational procedure known as proteotronics, which of them has the greatest potential for use in a biodevice.File | Dimensione | Formato | |
---|---|---|---|
chemosensors-11-00195.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
3.08 MB
Formato
Adobe PDF
|
3.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.