We consider second-order elliptic operators A in divergence form with coefficients belonging to Lloc∞(Ω), when Ω ⊆ ℝd is a sufficiently smooth (unbounded) domain. We prove that the realization of A in L2(Ω), with Neumann-type boundary conditions, generates a contractive, strongly continuous and analytic semigroup (T(t)) which has a kernel k satisfying generalized Gaussian estimates, written in terms of a distance function induced by the diffusion matrix and the potential term. Examples of operators where such a distance function is equivalent to the Euclidean one are also provided.

Generalized Gaussian Estimates for Elliptic Operators with Unbounded Coefficients on Domains

L. Angiuli;L. Lorenzi;E. Mangino
2023-01-01

Abstract

We consider second-order elliptic operators A in divergence form with coefficients belonging to Lloc∞(Ω), when Ω ⊆ ℝd is a sufficiently smooth (unbounded) domain. We prove that the realization of A in L2(Ω), with Neumann-type boundary conditions, generates a contractive, strongly continuous and analytic semigroup (T(t)) which has a kernel k satisfying generalized Gaussian estimates, written in terms of a distance function induced by the diffusion matrix and the potential term. Examples of operators where such a distance function is equivalent to the Euclidean one are also provided.
2023
978-3-031-20020-5
File in questo prodotto:
File Dimensione Formato  
Contents.pdf

accesso aperto

Descrizione: Contents
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 62.32 kB
Formato Adobe PDF
62.32 kB Adobe PDF Visualizza/Apri
Frontespizio.pdf

accesso aperto

Descrizione: Frontespizio
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 75.56 kB
Formato Adobe PDF
75.56 kB Adobe PDF Visualizza/Apri
ALM_ker.pdf

non disponibili

Descrizione: Chapter
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 494.34 kB
Formato Adobe PDF
494.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/492366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact