We consider second-order elliptic operators A in divergence form with coefficients belonging to Lloc∞(Ω), when Ω ⊆ ℝd is a sufficiently smooth (unbounded) domain. We prove that the realization of A in L2(Ω), with Neumann-type boundary conditions, generates a contractive, strongly continuous and analytic semigroup (T(t)) which has a kernel k satisfying generalized Gaussian estimates, written in terms of a distance function induced by the diffusion matrix and the potential term. Examples of operators where such a distance function is equivalent to the Euclidean one are also provided.
Generalized Gaussian Estimates for Elliptic Operators with Unbounded Coefficients on Domains
L. Angiuli;L. Lorenzi;E. Mangino
2023-01-01
Abstract
We consider second-order elliptic operators A in divergence form with coefficients belonging to Lloc∞(Ω), when Ω ⊆ ℝd is a sufficiently smooth (unbounded) domain. We prove that the realization of A in L2(Ω), with Neumann-type boundary conditions, generates a contractive, strongly continuous and analytic semigroup (T(t)) which has a kernel k satisfying generalized Gaussian estimates, written in terms of a distance function induced by the diffusion matrix and the potential term. Examples of operators where such a distance function is equivalent to the Euclidean one are also provided.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Contents.pdf
accesso aperto
Descrizione: Contents
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
62.32 kB
Formato
Adobe PDF
|
62.32 kB | Adobe PDF | Visualizza/Apri |
Frontespizio.pdf
accesso aperto
Descrizione: Frontespizio
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
75.56 kB
Formato
Adobe PDF
|
75.56 kB | Adobe PDF | Visualizza/Apri |
ALM_ker.pdf
non disponibili
Descrizione: Chapter
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
494.34 kB
Formato
Adobe PDF
|
494.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.