Aluminum/CNT nanocomposite sheets, with appropriate dispersion and interfacial bonding, were fabricated by a combination of powder metallurgy, spark plasma sintering (SPS), and hot rolling. The effects of CNT content as well as plastic deformation, on the microstructure and mechanical properties of the obtained nanocomposite, were investigated. The composite reinforced by 0.5 wt.% CNTs showed an optimal dispersion of CNTs into the aluminum matrix after both SPS and hot rolling. Minimum CNT damage and minimum carbide formation were observed after hot rolling. The best comprehensive mechanical properties corresponded to the sheet of Al-0.5 wt.% CNT nanocomposite thanks to the strong interfacial bonding between Al and CNTs, full densification of the nanocomposites as well as the uniform dispersion of the CNTs into the aluminum matrix. Hardness measurements showed that the maximum hardness was obtained for sheets containing 1.5 wt.% CNTs in both the as-SPS and the as-hot rolled conditions. Load transfer, Orowan, and grain size strengthening mechanisms could affect the increase of strength as well as the combination of strength and ductility of the sheets of Al-CNT nanocomposites. Aluminum/CNT nanocomposites were hot rolled without reinforcing damage. The optimal dispersion of 1.5% CNTs led to increased mechanical properties.
Hot rolling of MWCNTs reinforced Al matrix composites produced via spark plasma sintering
Behzad Sadeghi;Pasquale Cavaliere;
2019-01-01
Abstract
Aluminum/CNT nanocomposite sheets, with appropriate dispersion and interfacial bonding, were fabricated by a combination of powder metallurgy, spark plasma sintering (SPS), and hot rolling. The effects of CNT content as well as plastic deformation, on the microstructure and mechanical properties of the obtained nanocomposite, were investigated. The composite reinforced by 0.5 wt.% CNTs showed an optimal dispersion of CNTs into the aluminum matrix after both SPS and hot rolling. Minimum CNT damage and minimum carbide formation were observed after hot rolling. The best comprehensive mechanical properties corresponded to the sheet of Al-0.5 wt.% CNT nanocomposite thanks to the strong interfacial bonding between Al and CNTs, full densification of the nanocomposites as well as the uniform dispersion of the CNTs into the aluminum matrix. Hardness measurements showed that the maximum hardness was obtained for sheets containing 1.5 wt.% CNTs in both the as-SPS and the as-hot rolled conditions. Load transfer, Orowan, and grain size strengthening mechanisms could affect the increase of strength as well as the combination of strength and ductility of the sheets of Al-CNT nanocomposites. Aluminum/CNT nanocomposites were hot rolled without reinforcing damage. The optimal dispersion of 1.5% CNTs led to increased mechanical properties.File | Dimensione | Formato | |
---|---|---|---|
s42114-019-00095-7.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
3.22 MB
Formato
Adobe PDF
|
3.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.