Bentonitic clay and wood sawdust are natural materials widely available in nature at low cost with high heavy metals sorption properties that, in this work, were combined to achieve an effective composite biosorbent with high sorption properties and enhanced mechanical stability. Pine, aspen, and birch wood sawdust, as well as different bentonite clays and different sawdust modification methods (H3PO4 or HCl) were used for preparing new composite biosorbents. A mixture of wood sawdust and bentonite in a ratio of 2:1 was used. All materials were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) methods and tested for Cu and Ni ions removal from water. The adsorption process for all composite biosorbents was well described from a pseudo-second order kinetic model (R-2 > 0.9999) with a very high initial adsorption rate of Cu and Ni ions and a maximum uptake recorded within 2 h. The results have shown that the adsorption capacity depends mainly on the kind of wood and the acid treatment of the wood that enhances the adsorption capacity. At a concentration of 50 mg/L, the biosorbent prepared using birch wood sawdust showed the worst performance, removing barely 30% of Cu and Ni ions, while aspen wood sawdust improved the adsorption of Cu (88.6%) and Ni (52.4%) ions. Finally, composite biosorbent with pine wood sawdust showed the best adsorption be haviour with an efficiency removal of 98.2 and 96.3% of Cu and Ni ions, respectively, making it a good candidate as an inexpensive and effective biosorbent for the removal of heavy metals.

Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water

Roberta Del Sole
;
Giuseppe Vasapollo;Lucia Mergola
2023-01-01

Abstract

Bentonitic clay and wood sawdust are natural materials widely available in nature at low cost with high heavy metals sorption properties that, in this work, were combined to achieve an effective composite biosorbent with high sorption properties and enhanced mechanical stability. Pine, aspen, and birch wood sawdust, as well as different bentonite clays and different sawdust modification methods (H3PO4 or HCl) were used for preparing new composite biosorbents. A mixture of wood sawdust and bentonite in a ratio of 2:1 was used. All materials were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) methods and tested for Cu and Ni ions removal from water. The adsorption process for all composite biosorbents was well described from a pseudo-second order kinetic model (R-2 > 0.9999) with a very high initial adsorption rate of Cu and Ni ions and a maximum uptake recorded within 2 h. The results have shown that the adsorption capacity depends mainly on the kind of wood and the acid treatment of the wood that enhances the adsorption capacity. At a concentration of 50 mg/L, the biosorbent prepared using birch wood sawdust showed the worst performance, removing barely 30% of Cu and Ni ions, while aspen wood sawdust improved the adsorption of Cu (88.6%) and Ni (52.4%) ions. Finally, composite biosorbent with pine wood sawdust showed the best adsorption be haviour with an efficiency removal of 98.2 and 96.3% of Cu and Ni ions, respectively, making it a good candidate as an inexpensive and effective biosorbent for the removal of heavy metals.
File in questo prodotto:
File Dimensione Formato  
del sole 2023 (2).pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/508468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact