This paper presents a critical review on the measuring methods and parameters affecting nano-tribology in the context of nano-scale wear. Nano-scale wear phenomena play a crucial role in various industries, including micro/nano-systems, electronics, and biotechnology. The review begins by discussing the significance of nano-scale wear and its impact on device performance, lifespan, durability, energy efficiency, cost savings, and environmental sustainability. It then delves into the measuring methods employed to assess nano-scale wear, including scanning probe microscopy (SPM) techniques such as atomic force microscopy (AFM) and friction force microscopy (FFM). The capabilities of AFM and FFM in studying the roughness of surface, adhesion, friction, scratch, abrasion, and nano-scale material transfer are highlighted. Additionally, the review explores the parameters affecting nano-wear, such as lubrication strategies, stress levels, sliding velocity, and atomic-scale reactions. The article concludes by emphasizing the importance of advanced microscopy techniques in understanding tribological mechanisms at different scales, bridging the gap between macro and nano-tribology studies.

Nano-scale wear: A critical review on its measuring methods and parameters affecting nano-tribology

Sadeghi, Behzad;Cavaliere, Pasquale;Shabani, Ali;Lamberti, Luciano
2024-01-01

Abstract

This paper presents a critical review on the measuring methods and parameters affecting nano-tribology in the context of nano-scale wear. Nano-scale wear phenomena play a crucial role in various industries, including micro/nano-systems, electronics, and biotechnology. The review begins by discussing the significance of nano-scale wear and its impact on device performance, lifespan, durability, energy efficiency, cost savings, and environmental sustainability. It then delves into the measuring methods employed to assess nano-scale wear, including scanning probe microscopy (SPM) techniques such as atomic force microscopy (AFM) and friction force microscopy (FFM). The capabilities of AFM and FFM in studying the roughness of surface, adhesion, friction, scratch, abrasion, and nano-scale material transfer are highlighted. Additionally, the review explores the parameters affecting nano-wear, such as lubrication strategies, stress levels, sliding velocity, and atomic-scale reactions. The article concludes by emphasizing the importance of advanced microscopy techniques in understanding tribological mechanisms at different scales, bridging the gap between macro and nano-tribology studies.
File in questo prodotto:
File Dimensione Formato  
sadeghi-et-al-2023-nano-scale-wear-a-critical-review-on-its-measuring-methods-and-parameters-affect.pdf

non disponibili

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 8.04 MB
Formato Adobe PDF
8.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/511806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact