Pedigree charts remain essential in oncological genetic counseling for identifying individu- als with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a computer-aided detection/diagnosis sys- tem, based on machine learning and deep learning techniques, capable of the following: (1) assisting genetic oncologists in digitizing paper-based pedigree charts, and in generating new digital ones, and (2) automatically predicting the genetic predisposition risk directly from these digital pedigree charts. To the best of our knowledge, there are no similar studies in the current literature, and consequently, no utilization of software based on artificial intelligence on pedigree charts has been made public yet. By incorporating medical images and other data from omics sciences, there is also a fertile ground for training additional artificial intelligence systems, broadening the software predictive capabilities. We plan to bridge the gap between scientific advancements and practical implementation by modernizing and enhancing existing oncological genetic counseling services. This would mark the pioneering development of an AI-based application designed to enhance various aspects of genetic counseling, leading to improved patient care and advancements in the field of oncogenetics.
Artificial Intelligence Techniques and Pedigree Charts in Oncogenetics: Towards an Experimental Multioutput Software System for Digitization and Risk Prediction
Luana Conte;Tiziana Grassi;Francesco Bagordo;Giorgio De Nunzio
2024-01-01
Abstract
Pedigree charts remain essential in oncological genetic counseling for identifying individu- als with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a computer-aided detection/diagnosis sys- tem, based on machine learning and deep learning techniques, capable of the following: (1) assisting genetic oncologists in digitizing paper-based pedigree charts, and in generating new digital ones, and (2) automatically predicting the genetic predisposition risk directly from these digital pedigree charts. To the best of our knowledge, there are no similar studies in the current literature, and consequently, no utilization of software based on artificial intelligence on pedigree charts has been made public yet. By incorporating medical images and other data from omics sciences, there is also a fertile ground for training additional artificial intelligence systems, broadening the software predictive capabilities. We plan to bridge the gap between scientific advancements and practical implementation by modernizing and enhancing existing oncological genetic counseling services. This would mark the pioneering development of an AI-based application designed to enhance various aspects of genetic counseling, leading to improved patient care and advancements in the field of oncogenetics.File | Dimensione | Formato | |
---|---|---|---|
computation-12-00047.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.