This work investigates the physical properties of Al1−xScxN thin films sputtered at low temperatures by varying the process conditions. Specifically, the films were deposited at room temperature by applying a radio frequency power equal to 150 W to an AlSc alloy (60:40) target, varying the nitrogen flux percentage in the (Ar + N2) sputtering atmosphere (30%, 40%, 50%, and 60%) and keeping constant the working pressure at 5 × 10−3 mbar. The structural and chemical properties of the Al1−xScxN films were studied by x-ray diffraction and Rutherford backscattering spectrometry techniques, respectively. The piezoelectric response was investigated by piezoresponse force microscopy. In addition, the surface potential was evaluated for the first time for Sc-doped AlN thin films by Kelvin probe force microscopy, providing piezoelectric coefficients free from the no-piezoelectric additional effect to the mechanical deformation, i.e., the electrostatic force. By alloying AlN with scandium, the piezoelectric response was strongly enhanced (up to 200% compared to undoped AlN), despite the low deposition temperature and the absence of any other additional energy source supplied to the adatoms during thin film growth, which generally promotes a better structural arrangement of polycrystalline film. This is a strategic result in the field of microelectromechanical systems completely fabricated at low temperatures.
Low temperature sputtering deposition of Al1−xScxN thin films: Physical, chemical, and piezoelectric properties evolution by tuning the nitrogen flux in (Ar + N2) reactive atmosphere
Serra, A.;Manno, D.;Quarta, G.;Calcagnile, L.;Maruccio, L.;Sciurti, E.;Velardi, L.
2024-01-01
Abstract
This work investigates the physical properties of Al1−xScxN thin films sputtered at low temperatures by varying the process conditions. Specifically, the films were deposited at room temperature by applying a radio frequency power equal to 150 W to an AlSc alloy (60:40) target, varying the nitrogen flux percentage in the (Ar + N2) sputtering atmosphere (30%, 40%, 50%, and 60%) and keeping constant the working pressure at 5 × 10−3 mbar. The structural and chemical properties of the Al1−xScxN films were studied by x-ray diffraction and Rutherford backscattering spectrometry techniques, respectively. The piezoelectric response was investigated by piezoresponse force microscopy. In addition, the surface potential was evaluated for the first time for Sc-doped AlN thin films by Kelvin probe force microscopy, providing piezoelectric coefficients free from the no-piezoelectric additional effect to the mechanical deformation, i.e., the electrostatic force. By alloying AlN with scandium, the piezoelectric response was strongly enhanced (up to 200% compared to undoped AlN), despite the low deposition temperature and the absence of any other additional energy source supplied to the adatoms during thin film growth, which generally promotes a better structural arrangement of polycrystalline film. This is a strategic result in the field of microelectromechanical systems completely fabricated at low temperatures.File | Dimensione | Formato | |
---|---|---|---|
125105_1_5.0202683.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
3.86 MB
Formato
Adobe PDF
|
3.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.