A possible composite nature of the Higgs could be revealed at the early stage of the LHC, by analyzing the channels where the Higgs is produced from the decay of a heavy fermion. The Higgs production from a singly-produced heavy bottom, in particular, proves to be a promising channel. For a value λ = 3 of the Higgs coupling to a heavy bottom, for example, we find that, considering a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible at the 8TeV LHC with 30 fb -1 if the heavy bottom is lighter than roughly 530 GeV (while an observation is possible for heavy bottom masses up to ≃ 650 GeV). Such a relatively light heavy bottom is realistic in composite Higgs models of the type considered and, up to now, experimentally allowed. At √s = 14 TeV the LHC sensitivity on the channel increases significantly. With λ = 3 a discovery can occur, with 100 fb -1, for heavy bottom masses up to ≃ 1040 GeV. In the case the heavy bottom was as light as ≃ 500 GeV, the 14 TeV LHC would be sensitive to the measure of the λ coupling in basically the full range λ > 1 predicted by the theory. © SISSA 2012.

Discovering the composite Higgs through the decay of a heavy fermion

Vignaroli N.
2012-01-01

Abstract

A possible composite nature of the Higgs could be revealed at the early stage of the LHC, by analyzing the channels where the Higgs is produced from the decay of a heavy fermion. The Higgs production from a singly-produced heavy bottom, in particular, proves to be a promising channel. For a value λ = 3 of the Higgs coupling to a heavy bottom, for example, we find that, considering a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible at the 8TeV LHC with 30 fb -1 if the heavy bottom is lighter than roughly 530 GeV (while an observation is possible for heavy bottom masses up to ≃ 650 GeV). Such a relatively light heavy bottom is realistic in composite Higgs models of the type considered and, up to now, experimentally allowed. At √s = 14 TeV the LHC sensitivity on the channel increases significantly. With λ = 3 a discovery can occur, with 100 fb -1, for heavy bottom masses up to ≃ 1040 GeV. In the case the heavy bottom was as light as ≃ 500 GeV, the 14 TeV LHC would be sensitive to the measure of the λ coupling in basically the full range λ > 1 predicted by the theory. © SISSA 2012.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/518694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? ND
social impact