We give a complete answer to the local-global divisibility problem for algebraic tori. In particular, we prove that given an odd prime p$p$, if T$T$ is an algebraic torus of dimension r< p-1$ defined over a number field k$k$, then the local-global divisibility by any power pn$p<^>n$ holds for T(k)$T(k)$. We also show that this bound on the dimension is best possible, by providing a counterexample for every dimension r > p-1$r \geqslant p-1$. Finally, we prove that under certain hypotheses on the number field generated by the coordinates of the pn$p<^>n$-torsion points of T$T$, the local-global divisibility still holds for tori of dimension less than 3(p-1)$3(p-1)$.

Local–global divisibility on algebraic tori

Rocco Chirivi';
2024-01-01

Abstract

We give a complete answer to the local-global divisibility problem for algebraic tori. In particular, we prove that given an odd prime p$p$, if T$T$ is an algebraic torus of dimension r< p-1$ defined over a number field k$k$, then the local-global divisibility by any power pn$p<^>n$ holds for T(k)$T(k)$. We also show that this bound on the dimension is best possible, by providing a counterexample for every dimension r > p-1$r \geqslant p-1$. Finally, we prove that under certain hypotheses on the number field generated by the coordinates of the pn$p<^>n$-torsion points of T$T$, the local-global divisibility still holds for tori of dimension less than 3(p-1)$3(p-1)$.
File in questo prodotto:
File Dimensione Formato  
Bulletin of London Math Soc - 2023 - Alessandrì - Local global divisibility on algebraic tori.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 196.58 kB
Formato Adobe PDF
196.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/519566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact