We give a complete answer to the local-global divisibility problem for algebraic tori. In particular, we prove that given an odd prime p$p$, if T$T$ is an algebraic torus of dimension r< p-1$ defined over a number field k$k$, then the local-global divisibility by any power pn$p<^>n$ holds for T(k)$T(k)$. We also show that this bound on the dimension is best possible, by providing a counterexample for every dimension r > p-1$r \geqslant p-1$. Finally, we prove that under certain hypotheses on the number field generated by the coordinates of the pn$p<^>n$-torsion points of T$T$, the local-global divisibility still holds for tori of dimension less than 3(p-1)$3(p-1)$.
Local–global divisibility on algebraic tori
Rocco Chirivi';
2024-01-01
Abstract
We give a complete answer to the local-global divisibility problem for algebraic tori. In particular, we prove that given an odd prime p$p$, if T$T$ is an algebraic torus of dimension r< p-1$ defined over a number field k$k$, then the local-global divisibility by any power pn$p<^>n$ holds for T(k)$T(k)$. We also show that this bound on the dimension is best possible, by providing a counterexample for every dimension r > p-1$r \geqslant p-1$. Finally, we prove that under certain hypotheses on the number field generated by the coordinates of the pn$p<^>n$-torsion points of T$T$, the local-global divisibility still holds for tori of dimension less than 3(p-1)$3(p-1)$.File | Dimensione | Formato | |
---|---|---|---|
Bulletin of London Math Soc - 2023 - Alessandrì - Local global divisibility on algebraic tori.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
196.58 kB
Formato
Adobe PDF
|
196.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.