This paper investigates the advantages and challenges associated with two-phase flows, specifically flow boiling of pure liquids and nanofluids, for cooling applications in microchannel heat sinks. The study explores various two-phase flow patterns, their related issues, and examines the potential of nanoparticles to enhance heat transfer. Alumina (Al2O3), gold (Au), and silver (Ag) nanoparticles at different concentrations were tested. Experimental tests were conducted under different working conditions using various working fluids, including water, Al2O3 1 wt%, Ag 1 wt%, Au 1 wt%, Au 0.75 wt%, Au 0.5 wt%. The heat fluxes used were 1.026 kW/m2, 1.696 W/m2 and 2.403 kW/m2, while the volumetric flows ranged between 0.5 mL/min and 1.5 mL/min. The observed results indicate that even for the lowest particle concentration tested, the water-Au nanofluid exhibits superior cooling performance compared to the other examined fluids. The findings suggest that although two-phase flow conditions may not yield significant benefits, even small concentrations of nanoparticles (ϕ ≪ 1%) can significantly impact heat transfer mechanisms. This approach provides a cost-effective and efficient alternative for cooling microchannel heat sinks without necessitating the use of two-phase flow conditions.
Enhancement of microchannel heat sink heat transfer: Comparison between different heat transfer enhancement strategies
G Marseglia;MG De Giorgi;
2024-01-01
Abstract
This paper investigates the advantages and challenges associated with two-phase flows, specifically flow boiling of pure liquids and nanofluids, for cooling applications in microchannel heat sinks. The study explores various two-phase flow patterns, their related issues, and examines the potential of nanoparticles to enhance heat transfer. Alumina (Al2O3), gold (Au), and silver (Ag) nanoparticles at different concentrations were tested. Experimental tests were conducted under different working conditions using various working fluids, including water, Al2O3 1 wt%, Ag 1 wt%, Au 1 wt%, Au 0.75 wt%, Au 0.5 wt%. The heat fluxes used were 1.026 kW/m2, 1.696 W/m2 and 2.403 kW/m2, while the volumetric flows ranged between 0.5 mL/min and 1.5 mL/min. The observed results indicate that even for the lowest particle concentration tested, the water-Au nanofluid exhibits superior cooling performance compared to the other examined fluids. The findings suggest that although two-phase flow conditions may not yield significant benefits, even small concentrations of nanoparticles (ϕ ≪ 1%) can significantly impact heat transfer mechanisms. This approach provides a cost-effective and efficient alternative for cooling microchannel heat sinks without necessitating the use of two-phase flow conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.