Angular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Pb+Pb and pp collisions at the LHC. The muons are measured with transverse momenta and pseudorapidities satisfying p_{T}^{μ}>4 GeV and |η^{μ}|<2.4, respectively. The distributions of azimuthal angle separation Δϕ for muon pairs having pseudorapidity separation |Δη|>0.8, are measured in different Pb+Pb centrality intervals and compared to the same distribution measured in pp collisions at the same center-of-mass energy. Results are presented separately for muon pairs with opposite-sign charges, same-sign charges, and all pairs. A clear peak is observed in all Δϕ distributions at Δϕ∼π, consistent with the parent heavy-quark pairs being produced via hard-scattering processes. The widths of that peak, characterized using Cauchy-Lorentz fits to the Δϕ distributions, are found to not vary significantly as a function of Pb+Pb collision centrality and are similar for pp and Pb+Pb collisions. This observation will provide important constraints on theoretical descriptions of heavy-quark interactions with the quark-gluon plasma.
Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb+Pb and pp Collisions with the ATLAS Detector
M Centonze;G Chiodini;Francesco De Santis;E Gorini;S Grancagnolo;FG Gravili;M Greco;A Palazzo;M Primavera;S Spagnolo;A Ventura;
2024-01-01
Abstract
Angular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Pb+Pb and pp collisions at the LHC. The muons are measured with transverse momenta and pseudorapidities satisfying p_{T}^{μ}>4 GeV and |η^{μ}|<2.4, respectively. The distributions of azimuthal angle separation Δϕ for muon pairs having pseudorapidity separation |Δη|>0.8, are measured in different Pb+Pb centrality intervals and compared to the same distribution measured in pp collisions at the same center-of-mass energy. Results are presented separately for muon pairs with opposite-sign charges, same-sign charges, and all pairs. A clear peak is observed in all Δϕ distributions at Δϕ∼π, consistent with the parent heavy-quark pairs being produced via hard-scattering processes. The widths of that peak, characterized using Cauchy-Lorentz fits to the Δϕ distributions, are found to not vary significantly as a function of Pb+Pb collision centrality and are similar for pp and Pb+Pb collisions. This observation will provide important constraints on theoretical descriptions of heavy-quark interactions with the quark-gluon plasma.File | Dimensione | Formato | |
---|---|---|---|
prl132h.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.