This study investigates the dielectric properties of conductive biocomposites (CBs), which are integral to the development of advanced materials for flexible electronics and medical devices. A novel method employing Microwave Reflectometry (MR) is introduced, utilizing a miniaturized Vector Network Analyzer (m-VNA) and a dedicated sensing element (SE), to extract the dielectric properties of CBs. The method is grounded in a minimization principle, aligning the measured S11 reflection scattering parameter with its electromagnetic (EM) simulation, facilitating a refined process for determining the dielectric properties. The experimental setup was meticulously engineered, optimized, and validated using reference dielectric samples (RDSs) with known dielectric properties. The method was then applied to three innovative CBs, resulting in an accurate extrapolation of their dielectric properties. The findings highlight the method's versatility, cost-efficiency, and applicability to ultra-thin and flexible biopolymer films, offering significant potential for advancements in flexible electronics and bio-sensing applications.
A Method for Sensing Dielectric Properties of Thin and Flexible Conductive Biocomposites
Andrea Cataldo;Christian Demitri;Leonardo Lamanna;Raissa Schiavoni
2024-01-01
Abstract
This study investigates the dielectric properties of conductive biocomposites (CBs), which are integral to the development of advanced materials for flexible electronics and medical devices. A novel method employing Microwave Reflectometry (MR) is introduced, utilizing a miniaturized Vector Network Analyzer (m-VNA) and a dedicated sensing element (SE), to extract the dielectric properties of CBs. The method is grounded in a minimization principle, aligning the measured S11 reflection scattering parameter with its electromagnetic (EM) simulation, facilitating a refined process for determining the dielectric properties. The experimental setup was meticulously engineered, optimized, and validated using reference dielectric samples (RDSs) with known dielectric properties. The method was then applied to three innovative CBs, resulting in an accurate extrapolation of their dielectric properties. The findings highlight the method's versatility, cost-efficiency, and applicability to ultra-thin and flexible biopolymer films, offering significant potential for advancements in flexible electronics and bio-sensing applications.File | Dimensione | Formato | |
---|---|---|---|
sensors-24-03508-v2.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.