This study investigates the dielectric properties of conductive biocomposites (CBs), which are integral to the development of advanced materials for flexible electronics and medical devices. A novel method employing Microwave Reflectometry (MR) is introduced, utilizing a miniaturized Vector Network Analyzer (m-VNA) and a dedicated sensing element (SE), to extract the dielectric properties of CBs. The method is grounded in a minimization principle, aligning the measured S11 reflection scattering parameter with its electromagnetic (EM) simulation, facilitating a refined process for determining the dielectric properties. The experimental setup was meticulously engineered, optimized, and validated using reference dielectric samples (RDSs) with known dielectric properties. The method was then applied to three innovative CBs, resulting in an accurate extrapolation of their dielectric properties. The findings highlight the method's versatility, cost-efficiency, and applicability to ultra-thin and flexible biopolymer films, offering significant potential for advancements in flexible electronics and bio-sensing applications.

A Method for Sensing Dielectric Properties of Thin and Flexible Conductive Biocomposites

Andrea Cataldo;Christian Demitri;Leonardo Lamanna;Raissa Schiavoni
2024-01-01

Abstract

This study investigates the dielectric properties of conductive biocomposites (CBs), which are integral to the development of advanced materials for flexible electronics and medical devices. A novel method employing Microwave Reflectometry (MR) is introduced, utilizing a miniaturized Vector Network Analyzer (m-VNA) and a dedicated sensing element (SE), to extract the dielectric properties of CBs. The method is grounded in a minimization principle, aligning the measured S11 reflection scattering parameter with its electromagnetic (EM) simulation, facilitating a refined process for determining the dielectric properties. The experimental setup was meticulously engineered, optimized, and validated using reference dielectric samples (RDSs) with known dielectric properties. The method was then applied to three innovative CBs, resulting in an accurate extrapolation of their dielectric properties. The findings highlight the method's versatility, cost-efficiency, and applicability to ultra-thin and flexible biopolymer films, offering significant potential for advancements in flexible electronics and bio-sensing applications.
File in questo prodotto:
File Dimensione Formato  
sensors-24-03508-v2.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/524266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact