This research explores the application of wireless sensor networks for the non-invasive monitoring of sleep quality and vital signs in elderly individuals, addressing significant challenges faced by the aging population. The study implemented and evaluated WSNs in home environments, focusing on variables such as breathing frequency, deep sleep, snoring, heart rate, heart rate variability (HRV), oxygen saturation, Rapid Eye Movement (REM sleep), and temperature. The results demonstrated substantial improvements in key metrics: 68% in breathing frequency, 68% in deep sleep, 70% in snoring reduction, 91% in HRV, and 85% in REM sleep. Additionally, temperature control was identified as a critical factor, with higher temperatures negatively impacting sleep quality. By integrating AI with WSN data, this study provided personalized health recommendations, enhancing sleep quality and overall health. This approach also offered significant support to caregivers, reducing their burden. This research highlights the cost-effectiveness and scalability of WSN technology, suggesting its feasibility for widespread adoption. The findings represent a significant advancement in geriatric health monitoring, paving the way for more comprehensive and integrated care solutions.

Enhancing Elderly Care through Low-Cost Wireless Sensor Networks and Artificial Intelligence: A Study on Vital Sign Monitoring and Sleep Improvement

Paolo Visconti
Penultimo
Writing – Original Draft Preparation
;
2024-01-01

Abstract

This research explores the application of wireless sensor networks for the non-invasive monitoring of sleep quality and vital signs in elderly individuals, addressing significant challenges faced by the aging population. The study implemented and evaluated WSNs in home environments, focusing on variables such as breathing frequency, deep sleep, snoring, heart rate, heart rate variability (HRV), oxygen saturation, Rapid Eye Movement (REM sleep), and temperature. The results demonstrated substantial improvements in key metrics: 68% in breathing frequency, 68% in deep sleep, 70% in snoring reduction, 91% in HRV, and 85% in REM sleep. Additionally, temperature control was identified as a critical factor, with higher temperatures negatively impacting sleep quality. By integrating AI with WSN data, this study provided personalized health recommendations, enhancing sleep quality and overall health. This approach also offered significant support to caregivers, reducing their burden. This research highlights the cost-effectiveness and scalability of WSN technology, suggesting its feasibility for widespread adoption. The findings represent a significant advancement in geriatric health monitoring, paving the way for more comprehensive and integrated care solutions.
File in questo prodotto:
File Dimensione Formato  
Article Future Internet_Del-Valle-Soto et al_Published September 2024.pdf

accesso aperto

Descrizione: Published Version_Research Article_Future Internet
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/529726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact