Epstein–Barr virus proteins were examined for amino acid sequence matching to human proteins at the decapeptide level. We report that numerous EBV peptides of different length (from 10- to 13-mer) are present in 28 human proteins. The viral vs. human peptide overlap mainly involves the glycine-rich region allocated in the NH2 terminus of Epstein–Barr nuclear antigen 1 protein and host cellular components that play crucial roles in basic biochemical pathways, such as chromatin remodeling, RNA splicing, transmission across chemical/electrical synapses, and neurogenesis, and that, when altered, may characterize various pathologies such as immunodeficiency, systemic lupus erythematosus, myelination, and speech disorders. The present results might contribute to understand and define the (physio) pathological relationships and interactions occurring between EBV and the human host.
Peptide matching between Epstein–Barr virus and human proteins
LUCCHESE, GUGLIELMO;
2013-01-01
Abstract
Epstein–Barr virus proteins were examined for amino acid sequence matching to human proteins at the decapeptide level. We report that numerous EBV peptides of different length (from 10- to 13-mer) are present in 28 human proteins. The viral vs. human peptide overlap mainly involves the glycine-rich region allocated in the NH2 terminus of Epstein–Barr nuclear antigen 1 protein and host cellular components that play crucial roles in basic biochemical pathways, such as chromatin remodeling, RNA splicing, transmission across chemical/electrical synapses, and neurogenesis, and that, when altered, may characterize various pathologies such as immunodeficiency, systemic lupus erythematosus, myelination, and speech disorders. The present results might contribute to understand and define the (physio) pathological relationships and interactions occurring between EBV and the human host.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.