Formamidinium lead iodide (FAPI) represents the most promising perovskite for single junction solar cells, exhibiting an impressive performance when deposited in a controlled nitrogen environment. In order to foster the real-world application of this technology, the deposition of FAPI in ambient air is a highly desirable prospect, as it would reduce fabrication costs. This study demonstrates that the wettability of FAPI precursors on the hole transporting layers (HTL) used to fabricate inverted p-i-n solar cells is extremely poor in ambient air, hampering the realization of a perovskite active layer with good optoelectronic quality. To address this issue, herein, a double compatibilization method is developed, which results in the attainment of remarkable performance, exceeding 21%, representing one of the highest reported efficiencies for FAPI solar cells fabricated in humid ambient air. The incorporation of a small quantity of anionic surfactant, comprising a hydrocarbon tail and a polar headgroup, sodium dodecyl sulfate (SDS), in the perovskite solution and an ultrathin layer of alumina nanoparticles on the HTL, results in a significant improvement in the wettability of the FAPI solution. This enables the reproducible deposition of highly homogeneous perovskite films with complete coverage and excellent optical and optoelectronic quality. Furthermore, devices based on FAPI with SDS exhibit enhanced stability, retaining 98% of their initial efficiency after 40 h of continuous illumination.

A Double Compatibilization Strategy To Boost the Performance of p-i-n Solar Cells Based on Perovskite Deposited in Humid Ambient Air

Vanni, Nadir;Giuri, Antonella;Bravetti, Gianluca;Guascito, Maria Rachele;
2024-01-01

Abstract

Formamidinium lead iodide (FAPI) represents the most promising perovskite for single junction solar cells, exhibiting an impressive performance when deposited in a controlled nitrogen environment. In order to foster the real-world application of this technology, the deposition of FAPI in ambient air is a highly desirable prospect, as it would reduce fabrication costs. This study demonstrates that the wettability of FAPI precursors on the hole transporting layers (HTL) used to fabricate inverted p-i-n solar cells is extremely poor in ambient air, hampering the realization of a perovskite active layer with good optoelectronic quality. To address this issue, herein, a double compatibilization method is developed, which results in the attainment of remarkable performance, exceeding 21%, representing one of the highest reported efficiencies for FAPI solar cells fabricated in humid ambient air. The incorporation of a small quantity of anionic surfactant, comprising a hydrocarbon tail and a polar headgroup, sodium dodecyl sulfate (SDS), in the perovskite solution and an ultrathin layer of alumina nanoparticles on the HTL, results in a significant improvement in the wettability of the FAPI solution. This enables the reproducible deposition of highly homogeneous perovskite films with complete coverage and excellent optical and optoelectronic quality. Furthermore, devices based on FAPI with SDS exhibit enhanced stability, retaining 98% of their initial efficiency after 40 h of continuous illumination.
File in questo prodotto:
File Dimensione Formato  
Vanni_et_al_2024-a-double-compatibilization-strategy-to-boost-the-performance-of-p-i-n-solar-cells-based-on-perovskite.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 5.75 MB
Formato Adobe PDF
5.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/535335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact