In this paper, a leader motion mechanism is studied for the finite time achievement of any desired formation of a multi-agent system. The approach adopted in this paper exploits a recent technique based on leader motion to the formation control problem of second-order systems, with a special effort to networks of mobile devices and teams of vehicles. After a thorough description of the problem framework, the leader motion mechanism is designed to accomplish the prescribed formation attainment in finite time. Both asymptotic and transient behavior are thoroughly analyzed, to derive the appropriate analytical conditions for the controller design. The overall algorithm is then finalized by two procedures that allow the exploitation of local data only, and the leader motion mechanism is performed based on data collected by the leader during a preliminary experimental stage. A final section of simulation results closes the paper, confirming the effectiveness of the proposed strategy for formation control of a multi-agent system.
Data-Driven Formation Control for Multi-Vehicle Systems Induced by Leader Motion
Gianfranco Parlangeli
2024-01-01
Abstract
In this paper, a leader motion mechanism is studied for the finite time achievement of any desired formation of a multi-agent system. The approach adopted in this paper exploits a recent technique based on leader motion to the formation control problem of second-order systems, with a special effort to networks of mobile devices and teams of vehicles. After a thorough description of the problem framework, the leader motion mechanism is designed to accomplish the prescribed formation attainment in finite time. Both asymptotic and transient behavior are thoroughly analyzed, to derive the appropriate analytical conditions for the controller design. The overall algorithm is then finalized by two procedures that allow the exploitation of local data only, and the leader motion mechanism is performed based on data collected by the leader during a preliminary experimental stage. A final section of simulation results closes the paper, confirming the effectiveness of the proposed strategy for formation control of a multi-agent system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.