Asymmetry in the synaptic interactions between neurons plays a crucial role in determining the memory storage and retrieval properties of recurrent neural networks. In this work, we analyze the problem of storing random memories in a network of neurons connected by a synaptic matrix with a definite degree of asymmetry. We study the corresponding satisfiability and clustering transi- tions in the space of solutions of the constraint satisfaction problem associated with finding synaptic matrices given the memories. We find, besides the usual SAT/UNSAT transition at a critical number of memories to store in the network, an additional transition for very asymmetric matrices, where the competing con- straints (definite asymmetry vs memories storage) induce enough frustration in the problem to make it impossible to solve. This finding is particularly striking in the case of a single memory to store, where no quenched disorder is present in the system.

Satisfiability transition in asymmetric neural networks

Silvio Franz
2022-01-01

Abstract

Asymmetry in the synaptic interactions between neurons plays a crucial role in determining the memory storage and retrieval properties of recurrent neural networks. In this work, we analyze the problem of storing random memories in a network of neurons connected by a synaptic matrix with a definite degree of asymmetry. We study the corresponding satisfiability and clustering transi- tions in the space of solutions of the constraint satisfaction problem associated with finding synaptic matrices given the memories. We find, besides the usual SAT/UNSAT transition at a critical number of memories to store in the network, an additional transition for very asymmetric matrices, where the competing con- straints (definite asymmetry vs memories storage) induce enough frustration in the problem to make it impossible to solve. This finding is particularly striking in the case of a single memory to store, where no quenched disorder is present in the system.
File in questo prodotto:
File Dimensione Formato  
2022-Aguirre-López_2022_J._Phys._A__Math._Theor._55_305001.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/537907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact