We prove Rellich–Kondrachov-type theorems and weighted Poincaré inequalities on the half-space R+N+1={z=(x,y):x∈RN,y>0} endowed with the weighted Gaussian measure μ:=yce-a|z|2dz where c+1>0 and a>0. We prove that for some positive constant C>0, one has (Formula presented.) where u¯=1μ(R+N+1)∫R+N+1udμ(z). Besides this, we also consider the local case of bounded domains of R+N+1 where the measure μ is ycdz.

Gaussian Poincare Inequalities on the Half-Space with Singular Weights

Negro L.
;
Spina C.
2025-01-01

Abstract

We prove Rellich–Kondrachov-type theorems and weighted Poincaré inequalities on the half-space R+N+1={z=(x,y):x∈RN,y>0} endowed with the weighted Gaussian measure μ:=yce-a|z|2dz where c+1>0 and a>0. We prove that for some positive constant C>0, one has (Formula presented.) where u¯=1μ(R+N+1)∫R+N+1udμ(z). Besides this, we also consider the local case of bounded domains of R+N+1 where the measure μ is ycdz.
File in questo prodotto:
File Dimensione Formato  
2025-GaussianPoincare.pdf

solo utenti autorizzati

Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 396.2 kB
Formato Adobe PDF
396.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/540926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact