An integral representation result for free-discontinuity energies defined on the space GSBVp(·) of generalized special functions of bounded variation with variable exponent is proved, under the assumption of log-Hölder continuity for the variable exponent p(x). Our analysis is based on a variable exponent version of the global method for relaxation devised in Bouchitté et al. (Arch Ration Mech Anal 165:187–242, 2002) for a constant exponent. We prove Γ -convergence of sequences of energies of the same type, we identify the limit integrands in terms of asymptotic cell formulas and prove a non-interaction property between bulk and surface contributions.

Integral representation and Γ -convergence for free-discontinuity problems with p(·) -growth

Solombrino F.
;
2023-01-01

Abstract

An integral representation result for free-discontinuity energies defined on the space GSBVp(·) of generalized special functions of bounded variation with variable exponent is proved, under the assumption of log-Hölder continuity for the variable exponent p(x). Our analysis is based on a variable exponent version of the global method for relaxation devised in Bouchitté et al. (Arch Ration Mech Anal 165:187–242, 2002) for a constant exponent. We prove Γ -convergence of sequences of energies of the same type, we identify the limit integrands in terms of asymptotic cell formulas and prove a non-interaction property between bulk and surface contributions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/543847
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact