We prove a quantitative version of the Gaussian Faber–Krahn type inequality proved in (Betta et al. in Z. Angew. Math. Phys. 58:37–52, 2007) for the first Dirichlet eigenvalue of the Ornstein–Uhlenbeck operator, estimating the deficit in terms of the Gaussian Fraenkel asymmetry. As expected, the multiplicative constant only depends on the prescribed Gaussian measure.

Stability of the Gaussian Faber–Krahn inequality

Alessandro Carbotti;Simone Cito;Diego Pallara
2024-01-01

Abstract

We prove a quantitative version of the Gaussian Faber–Krahn type inequality proved in (Betta et al. in Z. Angew. Math. Phys. 58:37–52, 2007) for the first Dirichlet eigenvalue of the Ornstein–Uhlenbeck operator, estimating the deficit in terms of the Gaussian Fraenkel asymmetry. As expected, the multiplicative constant only depends on the prescribed Gaussian measure.
File in questo prodotto:
File Dimensione Formato  
CarCitLamPal24AMPA.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 321.28 kB
Formato Adobe PDF
321.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/546846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact