We prove a quantitative version of the Gaussian Faber–Krahn type inequality proved in (Betta et al. in Z. Angew. Math. Phys. 58:37–52, 2007) for the first Dirichlet eigenvalue of the Ornstein–Uhlenbeck operator, estimating the deficit in terms of the Gaussian Fraenkel asymmetry. As expected, the multiplicative constant only depends on the prescribed Gaussian measure.
Stability of the Gaussian Faber–Krahn inequality
Alessandro Carbotti;Simone Cito;Diego Pallara
2024-01-01
Abstract
We prove a quantitative version of the Gaussian Faber–Krahn type inequality proved in (Betta et al. in Z. Angew. Math. Phys. 58:37–52, 2007) for the first Dirichlet eigenvalue of the Ornstein–Uhlenbeck operator, estimating the deficit in terms of the Gaussian Fraenkel asymmetry. As expected, the multiplicative constant only depends on the prescribed Gaussian measure.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CarCitLamPal24AMPA.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
321.28 kB
Formato
Adobe PDF
|
321.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.