In this paper we study the vanishing inertia and viscosity limit of a second order system set in an Euclidean space, driven by a possibly nonconvex time-dependent potential satisfying very general assumptions. By means of a variational approach, we show that the solutions of the singularly perturbed problem converge to a curve of stationary points of the energy and characterize the behavior of the limit evolution at jump times. At those times, the left and right limits of the evolution are connected by a finite number of heteroclinic solutions to the unscaled equation.

A variational approach to the quasistatic limit of viscous dynamic evolutions in finite dimension

Solombrino F.
2019-01-01

Abstract

In this paper we study the vanishing inertia and viscosity limit of a second order system set in an Euclidean space, driven by a possibly nonconvex time-dependent potential satisfying very general assumptions. By means of a variational approach, we show that the solutions of the singularly perturbed problem converge to a curve of stationary points of the energy and characterize the behavior of the limit evolution at jump times. At those times, the left and right limits of the evolution are connected by a finite number of heteroclinic solutions to the unscaled equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/547713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact