This paper proposes a Bayesian edge detector to be fed by polarimetric, possibly multifrequency, synthetic aperture radar (SAR) data. It can be used to detect dark spots on the ocean surface and, hence, as the first stage of a system for identification and monitoring of oil slicks. The proposed detector does not require secondary data (i.e., pixels from a slick-free area) but for a certain a priori knowledge; remarkably, a preliminary performance assessment, based on both synthetic and real SAR recordings, shows that it has a slightly better performance in terms of detection and false alarm control than previously proposed classical (i.e., non-Bayesian) detectors. © 1980-2012 IEEE.

A bayesian approach to oil slicks edge detection based on SAR Data

Bandiera F.;Masciullo A.;
2014-01-01

Abstract

This paper proposes a Bayesian edge detector to be fed by polarimetric, possibly multifrequency, synthetic aperture radar (SAR) data. It can be used to detect dark spots on the ocean surface and, hence, as the first stage of a system for identification and monitoring of oil slicks. The proposed detector does not require secondary data (i.e., pixels from a slick-free area) but for a certain a priori knowledge; remarkably, a preliminary performance assessment, based on both synthetic and real SAR recordings, shows that it has a slightly better performance in terms of detection and false alarm control than previously proposed classical (i.e., non-Bayesian) detectors. © 1980-2012 IEEE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/548627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact